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We address the surface-tension-driven dynamics of porous media in nearly saturated pore-space solutions.
We linearize this dynamics in the reaction-limited regime near its fixed points—surfaces of constant mean
curvature(CMC surfaces). We prove that the only stable interface for this dynamics is the plane and estimate
the time scale for a CMC surface to become unstable. We also discuss the differences between dynamics in
open and closed environments, pointing out the unlikelihood that CMC surfaces are ever realized in such
environments on any time scale.
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I. INTRODUCTION

When solid grains are suspended in a solution saturated
with the molecular constituents of the grains, they undergo
coarsening under the thermodynamic driving force of surface
tension. During this phenomenon, known as Ostwald ripen-
ing, the free energy of the system is lowered by minimizing
the contact area between the coexisting phases. Molecules
dissolve from high-curvature areas of the interface, pass
through the solution, and can precipitate in low-curvature
surface regions. This dynamics can be very complicated and
depends on many parameters such as chemical composition,
induced temperature and pressure fields, and other factors
[1].

For the case of grains suspended in a solution, a mean
field theory due to Lifshitz-Slyozov and Wagner is successful
in capturing the dynamics at late stages of the ripening pro-
cess for low solid volume fraction[2]. Another example of
surface-tension-driven ripening arises in the kinetics of
foams[3], in which the passage of gas across the fluid bor-
ders separating gas bubbles allows larger bubbles to grow at
the expense of smaller ones—dry foams with a small liquid
volume fraction represent an opposite limit from the
Lifshitz-Slyozov-Wagner case.

In this report we study Ostwald ripening in porous media,
where the fluid in the pore space is approximately saturated
with the ingredients of the solid phase. Unlike the examples
above, in typical porous media both the solid and pore space
components of the medium are connected. An example
would be a sedimentary material such as sandstone, with the
water in the pore space saturated with the silica components
of the rock. Another example would be crushed ice, with
water vapor saturating the air in the pore space between ice
grains.

It is clear that the fixed points of the dissolution-
precipitation dynamics are surfaces of “constant mean curva-
ture” (CMC surfaces). However, determining whether such
surfaces are metastable or unstable is considerably more in-
volved than in the case of isolated spheres discussed above.

We are able to show that arbitrary surfaces are unstable to
Ostwald ripening under a quite general set of circumstances,
a fact which may have implications for the ultimate fate of
bicontinuous porous media in geophysical and other applica-
tions. We are unaware of any previous demonstration of this
fundamental property of two-component systems that attains
the level of generality of our discussion.

While we are able to estimate time scales for these insta-
bilities for geophysical systems, for real earth science sys-
tems dissolution-precipitation dynamics involve complicated
multicomponent equilibria, and non-surface-tension-related
mechanisms such as pressure solution often dominate as well
[4].

II. EQUATIONS OF SURFACE MOTION

Following [5] we consider the evolution of an interface
G;xsu,vd between a porous, single component, isotropic
solid and its ideal solution in the interstitial fluid. The solid is
subject to a first order dissolution-precipitation reaction in a
flow field of velocity v. The normal velocity of the surface
unsxd into the pore space is given by

unsxd = − Kfs1 − e−Dmsxd/kTd, s1d

whereKf is the dissolution rate, and the precipitation rate is
controlled by the Boltzmann factor associated with the dif-
ferenceDmsxd;msursxd−msolsxd between the chemical po-
tentials of solid and dissolved molecules at the interfaceG.
Referred to the chemical potentialmflat for a flat surface in
equilibrium with an ideal saturated solution of concentration
csat, these are given by

msursxd = mflat + 2nmsHsxd, s2d

msolsxd = mflat + kT ln
csxd
csat

, s3d

wherenm is the molecular volume in the solid,s is the in-
terfacial energy,csxd is the concentration near the surface
point x, and Hsxd;s1/2dsdS/dVd is the mean curvature,
which measures the local variation in surface areadS with
respect to a volume changedV of the solid. Here and else-
where we define all concentrations with respect to the con-
centration in the solid.
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For Dm!kT, Eq. (1) reduces to

unsxd = − Kf
2nms

kT
FHsxd −

kT

2nms
ln

csx,td
csat

G . s4d

SinceH should be no larger than the inverse of a typical pore
sizeL, andnms /kT is usually a molecular scale

kT

nms
@ L−1 ù H, s5d

we see that the linearized form of the dynamics holds for a
nearly saturated solutionc<csat.

The surface dynamics described in Eq.(4) depends on the
dynamics of the concentration fieldcsx ,td in the solution,
which in turn is determined by an advection-diffusion equa-
tion,

] c

] t
= − ¹ ·J = D¹2c − ¹ · svcd, s6d

Jnsxd =
1

nm
unsxdfor x P G, s7d

whereJ is the current, andJn its component in the normal
direction to the surface.D is the diffusion constant, andv is
the fluid velocity, whose normal componentvn must vanish
on G. Note that our use of Eq.(1) implies that the
dissolution-reprecipitation process cannot be strongly trans-
port limited; i.e., we are neglecting any dependence ofKf on
c. Equation(7) expresses kinematic boundary conditions for
Eq. (6) on G. Far from the evolving interface the solution
concentration reaches some spatially homogeneous value,
and the velocityv is given by the flow in the medium, which
solves the appropriate fluid dynamical equation for the
boundary conditions on fluid flow in the medium.

As already hinted, the nature of the problem we have to
consider depends strongly on whether we are concerned with
reaction-limited or transport-limited kinetics. The reaction
rateKf determines a typical reaction timetreact;L /Kf. The
transport timettrans, which appears implicitly in Eq.(4)
through the termcsx ,td, is the typical time for the solution
concentration to relax to a spatially homogeneous value by
the transport process described in Eq.(6). In this study we
will be concerned only with the casetreact@ttrans; we are not
interested herein in transport-limited phenomena such as
dendritic growth at the surface.

Even with this restriction, we must still specify something
about the nature of the transport in order to clearly define our
problem. Consider the Péclet number characterizing trans-
port in the medium, Pe=vL /D, wherev is the characteristic
fluid velocity andL the pore size, which serves as a charac-
teristic length scale in the medium. In the limit Pe→0, there
is no flow in the medium, and the total amount of solid
material (whether in matrix form or in solution) must be
conserved. In the opposite limit, in which the velocityv
→`, we expect the concentration everywhere in the medium
to be fixed by the concentration upstream, outside the region
in which the interface is evolving.

Since the full solution of the transport equations in a po-
rous medium is daunting, we concentrate on these two lim-

iting cases of this problem, which we term “perfect open”
and “perfect closed” systems. In a perfect open system, the
velocity of the flow through the medium is considered suffi-
ciently rapid that in effect each element of the surface is in
contact with fluid whose concentrationc of the solute is fixed
by a distant reservoir. Thuscsx ,td=c in Eq. (4) is fixed in
this case. The other limit of a “perfect closed” system, in
which v=0, will be explored at the end of this report.

Following Ref. [6], the various kinetic regimes are sum-
marized in the “phase diagram” depicted in Fig. 1, as a func-
tion both of Pe as well as of the “Damköhler” number Da
=Kf /v, which controls the degree of transport vs reaction
limitation in the high-Péclet-number limit. In the low-Péclet-
number limit, the degree of transport vs reaction limitation is
controlled by the product of Pe and Da, as indicated in
Fig. 1.

III. PERFECT OPEN SYSTEM: GEOMETRICAL
FORMALISM

In the perfect open case, the concentrationcsxd on the
solution side of the interface has the constant valuec`, and
the interface dynamics is governed only by Eq.(4), which
yields

unsxd = − Kf
2nms

kT
fHsxd − H!g, s8d

where H!;fkT/ s2nmsdglnsc` /csatd. The caseH!=0 corre-
sponds to the well-known Allen-Cahn equation[1].

CMC surfaces, for whichHsxd=H! everywhere on the
surface, are the fixed points of the dynamics(8). These sur-
faces have been studied in a variety of contexts, notably for
their relationship to certain phases of block copolymers[7].
The simplest examples are a sphere of radiusr =1/H and a
cylinder of radiusr =1/2H. We are more interested, however,
in bicontinuous surfaces, in which the regions on both sides
of the surface are connected; these will represent a better
model for porous media, in which the solid matrix provides
competence, while the fluid component is entirely connected
allowing large-scale flows to occur.

FIG. 1. Kinetic “phase diagram.” Note that for low Pe the prod-
uct PeDa determines whether the system is reaction-limited or
transport limited, while for high Pe it is Da that determines this
balance. PointA corresponds to a “perfect closed” system, while the
line B (along which Da=0) corresponds to a “perfect open” system.
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A special case of CMC surfaces are “minimal surfaces,”
for which Hsxd=0. These surfaces have been extensively
studied in the context of analytic function theory, and many
such surfaces have been discovered, including bicontinuous
surfaces, such as the famous triply periodic “SchwartzP
surface”(see Fig. 2) [9]. ForH!=0, Eq.(8) is the equation of
motion for a manifold seeking to minimize its own surface
area, a dynamics that is sometimes called “motion under
mean curvature”[10].

Andersonet al. have extended several such surfaces into
bicontinuous triply periodic CMC surfaces withHÞ0 [11].
The extension of the SchwartzP surface to a family of CMC
surfaces is shown in Fig. 3, with an example depicted in Fig.
2(b). These surfaces vary continuously from theP surface
sMd to a simple cubic lattice of barely touching spheres at
one end pointsAd, and to a simple cubic lattice of barely
touching spherical holes at the other end pointsA8d (see Fig.
3). Andersonet al. also generated families corresponding to
fcc, bcc, and diamond lattices of spheres, with qualitatively
similar properties. Although we are aware of no reported
examples of “amorphous” nonperiodic families of CMC sur-
faces, it is possible that such families exist. Such families
would be most relevant to real porous media.

IV. STABILITY OF CMC SURFACES

We now show that all periodic CMC surfaces with the
(degenerate) exception of planes are unstable fixed points of

Eq. (8). Consider a surfacex8su,vd=x+esxdnsxd, whose de-
viation from a CMC surfacexsu,vdPG! with Hsxd=H! is
given by a(small) normal displacementesxd. In the Appen-
dix we show that the corresponding variationdHsxd=Hsx8d
−H! is given to first order ine by

dHsxd = − F„s2H!d2 − K…e + =sB · =se +
1

2
=s

2eG , s9d

Bsxd ; −
1

8
lnfsH!d2 − Ksxdg, s10d

where =s and =s
2 are the surface gradient and Laplacian,

respectively, andKsxd is the Gaussian curvature atx. Substi-
tuting Eq.(9) in Eq. (8), we obtain the linear dynamics near
a CMC surface with mean curvatureH!:

] e

] t
=

2Kfnms

kT
Le, s11d

L ; 2sH!d2 − K + =sB · =s +
1

2
=s

2. s12d

Recalling the definition ofH and K in terms of the local
principal radii of curvature of the surfaceR1 andR2,

H = sR1
−1 + R2

−1d/2, K = sR1R2d−1.

Since 2H2−K=sR1
−2+R2

−2d /2ù0, uniform precipitation
se.0d decreases the mean curvature, making the surface lo-
cally more hospitable to deposition, while dissolutionse,0d
increases the mean curvature, favoring further dissolution.
This observation already suggests that the surface is likely to
be unstable.

Because the term inL which couples Gaussian curvature
gradients with the gradient ofe is non-Hermitian, it is more
convenient to work with the Hermitian operatorH defined
via the “gauge transformation”

H ; eBsxdLe−Bsxd s13d

so that

FIG. 2. (Color online) (a) The SchwartzP surface, a minimal
(zero mean curvature) surface of simple cubic symmetry. A single
unit cell is shown.(b) A single unit cell of sizeL of a CMC surface
with HL<2.0, which is close to a simple cubic lattice of touching
spheres. Figures courtesy of J. T. Hoffman, MSRI Scientific Graph-
ics Project, UC-Berkeley[8].

FIG. 3. (a) The dimensionless mean curvature
HL versusfs, the solid volume fraction enclosed
by the surface[Eq. (23)], for the constant mean
curvature extension of the SchwartzP surface
with unit cell sizeL. The minimalsH=0d P sur-
face is represented by the pointM, and the end
points correspond to(A) a simple cubic lattice of
touching spheres, andsA8d a simple cubic lattice
of touching spherical holes.(b) The surface area
L2 per unit cell of sizeL versus enclosed solid
volume fractionfs for the same simple cubic
CMC family. The lower branch is stable under
periodic, volume-preserving, surface-minimizing
dynamics. Figure adapted from Ref.[10], cour-
tesy ofAdvances in Chemical Physics.
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H = Vsxd +
1

2
=s

2, s14d

Vsxd = sH!d2 − K −
1

2
f=s

2B + s=sBd2g. s15d

If the Hilbert spaces upon which the two operatorsL and
H act are identical, the eigenvalues ofH are identical to
those ofL [12]. This should certainly hold if we restrict
ourselves to periodic surfaces. These eigenvalues are
bounded from above provided thatuVsxd u ,`.

For any functionCsxd defined on the surface, a lower
bound on the maximum eigenvaluev0 of H (and conse-
quently on the maximum eigenvalue ofL) can be established
using the inequality

v0 ù

E
G

dSC̄sHCd

E
G

dSuCu2
, s16d

whereeG dS is the ordinary surface integral. Using the trial
function CBsxd=eBsxd, we obtain

v0 ù

E
G

dSfsH!d2 − Kg−1/4f2sH!d2 − Kg

E
G

dSfsH!d2 − Kg−1/4

= H!
2 +

E
G

dSfsH!d2 − Kg3/4

E
G

dSfsH!d2 − Kg−1/4

. s17d

Note that H2−K=fs1/R1d−s1/R2dg2/4 is non-negative ev-
erywhere on the surface, and reaches zero only at umbilic
points of the surface for whichR1=R2. For minimal surfaces,
these umbilics will be isolated points on the surface, while
for more general CMC surfaces, we might expect them to be
organized locally into arcs on the surface. Suppose that at a
distanced from the umbilic point we haveuR1−R2u,Ad2

(with A a constant) in the former case anduR1−R2u,Ad in
the latter case. It follows that the surface integral in the de-
nominator on the right-hand side of Eq.(17) will not diverge,
so that

v0 . sH!d2 s18d

strictly.
Thus it follows that all CMC surfaces, porous or nonpo-

rous, are unstable to Ostwald ripening. This conclusion ap-
plies to periodic surfaces, but the structure of the argument
strongly suggests that it will apply to nonperiodic(amor-
phous) CMC surfaces as well, should such surfaces exist.

For a system with a pore scale ofL, we expect this insta-
bility to manifest itself on a time scale of

tripen= v0
−1 ,

kTL2

Kfsnm
. s19d

Note that, intuitively, the instability is enhanced by an in-
crease in the magnitude either of the mean curvature, or of
the Gaussian curvature(since the latter is on average nega-
tive for a surface of large genus, such as a typical porous
surface). In the sintering dynamics of “kissing” spheres, this
dependence on the Gaussian curvature plays an important
role [13].

For triply periodic CMC surfaces, the periodicity of the
“potential” Vsxd implies that the eigenmodesCk,nsxd of the
operatorH (and ofL) are surface Bloch functions,

HCk,nsxd = vk,ne
ik·xUk,nsxd, s20d

Uk,nsxd = Uk,nsx + Rd, s21d

whereR is a lattice vector,k is the crystal momentum(con-
fined to the first Brillouin zone), and n is a discrete label
distinguishing between different branches. Standard tech-
niques should allow determination of the spectrum ofH
throughout the first Brillouin zone.

Since the eigenfunction of the largest eigenvalue has the
same sign(precipitation or dissolution) everywhere on the
surface, the unstable dynamics of Eq.(8) involves transport
of solute into (or out of) the pore space from the distant
reservoir with fixed chemical potential.

V. CLOSED SYSTEM DYNAMICS

In a “perfect closed” system, the surface motion is reac-
tion limited, such that the solute concentrations near the en-
tire surface are equal to the average concentration in the pore
c̄. This condition is satisfied at the pore scaleL if D
@KfL /csat. In addition, we impose conservation of total
solid.

By integrating Eq.(4) over the surface, we see thatc̄ must
then approach a valueceq determined by

ln
ceqsH̄d

csat
=

2nmsH̄

kT
, s22d

controlled by the mean curvatureH̄ of the surface, over a
characteristic time scaletpore=Lcsat/Kf. For t.tpore, the sol-

ute concentrationc̄ is “slaved” toceqsH̄d. Conservation of the
total solid requires

ft = fs + c̄s1 − fsd, s23d

wherefs is the solid volume fraction enclosed by the surface
and ft would be the solid volume fraction if none of the

solid were dissolved. Eliminatingc̄=ceqsH̄d from Eq. (23)
using Eq.(22) shows thatfs is very insensitive to the value

of H̄,

Udlogfs

dlogH̄
U <

2csats1 − ftd
fss1 − csatd2

nmsuH̄u
kT

! 1, s24d

where we have used Eq.(5). Thus, in a “perfect closed”
system, we takefs constant, which is an excellent approxi-
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mation fort.tpore. This dynamics is now given by Eq.(8)
with the constantH! replaced byH̄, whose evolution with
time is controlled by the constraint of constantfs<sft

−csatd / s1−csatd. This is surface area minimization under the
constraint that the volume contained within the surface is
conserved.

Consider again periodic surfaces of the Anderson type.
Figure 3(b) shows the total surface area as a function offs
along the manifold of CMC surfaces of simple cubic struc-
ture. Although all CMC solutions represent fixed points of
the dynamics, we anticipate that for a givenfs, only the
CMC surface with the lowest area can be stable under these
dynamics, and then only if the system is also required to
maintain its spatial periodicity. We have confirmed this by
direct simulation usingSURFACE EVOLVER[13,16]—the sur-
faces along the lower energy branch in Fig. 3(b) are selected
by surface area minimization at constant volume provided
one works with one unit cell of the Anderson surfaces with
periodic boundary conditions. This result is an extension of
the well-known stability of the minimal surface(point M in
Fig. 3) to the entire lower branch in Fig. 3(b), under periodic
surface area minimization dynamics with conserved volume.

A corollary of this result is that along this lower branchL
or equivalentlyH has only one unstablek=0 mode, which is
disallowed by solid conservation under closed system dy-
namics. Thus the eigenmode spectrum ofH, outlined in Eq.
(20), has the band structure shown in Fig. 4; at smallk there
can only be one unstable branch of the spectrum. For a unit
cell system with periodic boundary conditions, only thek
=0 modes can participate in the dynamics, and the instability
is suppressed by the volume conservation. Thus the stable
mode with the longest relaxation timetrelax will control ap-
proach to the stable CMC surface; dimensional analysis sug-
gests thattrelax,tripen (cf. Fig. 4).

Nevertheless, for an extended system this apparent stabil-
ity is compromised by the unstable hydrodynamicskÞ0d
modes in the eigenvalue spectrum Eq.(20), which do con-
serve the overallfs. It is possible for these unstable modes to
be restricted to the topmostsn=0d band and to wave vectors
k,p /,0, such that transport of solute over length scales.,0

is needed to activate these modes. For amorphous surfaces,
the band structure picture is not appropriate, but we still
expect unstable modes to appear above a characteristic
length scale,0*L. In either case, it is natural to ask if there
is a window of time over which the CMC surfaces might be
observable, before the instability manifests itself.

During the timetrelax characterizing the relaxation to the
CMC surface, the diffusion length over which solid transport
is possible is,D=ÎDtrelax. Using the reaction-limited con-
straintD@KfL /csat andtrelax,tripen, with tripen given by Eq.
(19), we find

,D

L
@Î kTL

snmcsat
@ 1, s25d

where the last inequality follows from Eq.(5), andcsatø1.
Since we thus expect,D@,0, by the time a surface relaxes
on the pore scale to a CMC surface, the diffusive transport
between pores will have activated the unstable dynamics,
taking the system away from this surface. Thus we do not
expect an intermediate-time window over which CMC sur-
faces would be seen[14].

VI. CONCLUSION AND GEOPHYSICAL EXAMPLES

Our primary result is a kind of “no-go” theorem: CMC
surfaces will in practice be rather irrelevant to the surface-
tension-driven ripening of porous media, at least in the
single-component case studied here. Thus we expect that
long-time behavior of such media to be dominated by ripen-
ing through a variety of structures that do not necessarily
have any resemblance at all to CMC surfaces. It remains
only to specify the time scale over which the ripening phe-
nomena will become dominant.

Using representative values forKf and s for quartz in
water [15], we get forL,100 mm thattripen,5003106 yr,
a time scale over which a geological system should be re-
garded as open. However, a similar estimate for CaCO3
yields a value oftripen,7 yr, which is quite short on geo-
logical time scales. On this time scale, the concentration of
solute in the water is determined by conservation of the total
amount of the solid components, characteristic of a closed
system[17].

Finally, for the example of a crushed ice pack with air as
the interstitial fluid, we have over the range −10 to 0°C that
Kf increases from 6310−5 to 1.3310−4 m/s. For a packing
of grains with a 1.5 mm diameter and a surface energy for
the ice ofs=109 mN/m, this yields estimates for ripening
times in the range 26 to 57 days.
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APPENDIX

A. Basic differential geometry, notations and definitions

Consider a surfaceXsu,vd. The unit normal to the surface
at any pointP is denoted byNsu,vd. A complete local de-
scription of the surface is given by the distance between
neighboring pointsds as functions ofdu and dv and the
projectionkn of the curvature vector of a curve in a direction
du/dv onto the normalN,

ds2 = Edu2 + 2Fdu dv + G dv2, sA1d

kn =
edu2 + 2fdudv + gdv2

Edu2 + 2Fdudv + Gdv2 . sA2d

Equation(A1) is the first fundamental form, while Eq.(A2)
gives the ratio of the second to the first fundamental form.

The coefficientsE,F, G, e, f, g depend on the coordinates
and change from one coordinate system to another. They can
be defined in terms of the tangent vectorsXu,Xv and the
normalN by

E = Xu ·Xu, F = Xu ·Xv, G = Xv ·Xv, sA3d

e= − Xu ·Nu, f = −
1

2
sXu ·Nv + Xv ·Nud,

g = − Xv ·Nv. sA4d

A special coordinate system is defined by the principal
directions of the curvature. That is, at each point the tangent
vector Xu points to the direction of maximal curvature and
the other tangent vectorXv points to the direction of minimal
curvature. One can show that this is the only coordinate sys-
tem for which both off-diagonal termsF , f vanish at each
point on the surface. Moreover, using this coordinate system
one can show that

k1 = e/E, sA5d

k2 = g/G. sA6d

At any given point on the surface one can define the mean
curvatureHsu,vd as the average of the two principal curva-
tures,k1su,vd and k2su,vd. The Gaussian curvatureKsu,vd
is the product ofk1su,vd andk2su,vd. In terms ofE,F, G, e,
f, g:

H =
Eg− 2fF + Ge

2sEG− F2d
, sA7d

K =
eg− f2

EG− F2 . sA8d

The coefficientsE,F, G, e, f, g cannot be arbitrary smooth
differentiable functions ofu and v, but must satisfy the
Gauss and Gauss-Codazzi equations

K = −
1

ÎEG
F ]

] u
S 1

ÎE

] ÎG

] u
D +

]

] v
S 1

ÎG

] ÎE

] v
DG sA9d

and

] k1

] v
=

1

2
sln Edvsk2 − k1d,

] k2

] u
=

1

2
sln Gdusk1 − k2d. sA10d

The second derivatives of the tangent vectorsXuu,Xuv ,Xvv
can be expressed in terms of the local coordinate system
Xu,Xv ,N by using the Christoffel symbols

Xuu = G11
1 Xu + G11

2 Xv + eN,

Xuv = G12
1 Xu + G12

2 Xv + fN,

Xvv = G22
1 Xu + G22

2 Xv + gN. sA11d

In the special coordinate system that we chose the Christoffel
symbols are

G11
1 =

1

2

Eu

E
, G11

2 = −
1

2

Ev

G
,

G12
1 =

1

2

Ev

E
, G12

2 =
1

2

Gu

G
,

G22
1 = −

1

2

Gu

E
, G22

2 =
1

2

Gv

G
. sA12d

We need also the surface derivatives of the normalN:

Nu =
fF − eG

EG− F2Xu +
eF− fE

EG− F2Xv,

Nv =
gF − fG

EG− F2Xu +
fF − gE

EG− F2Xv. sA13d

B. Linear expansion

Here we will calculate the perturbed mean curvature from
Eqs.(A3) and(A4). Let us represent the perturbed surface by
the same coordinate system that was chosen for the unper-
turbed surface. That is,

X8su,vd = Xsu,vd + esu,vdNsu,vd, sA14d

where the coordinate systemsu,vd is chosen such that the
tangentsXu,Xv are the principal directions of curvature at
any point of the unperturbed surfaceXsu,vd.

From Eq.(A14) we get

Xu8 = Xu + eNu + euN, sA15d

Xv8 = Xv + eNv + evN. sA16d

We will need also the normal to the perturbed surfaceN8. To
obtain it we use the fact thatXu,Xv ,N form an orthogonal
system and write
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N8 = aN + bXu + gXv, sA17d

where a ,b ,g are determined by requiringN8 to be a unit
vector orthogonal to the two tangents vectors of the per-
turbed surface:

N8Xu8 = N8Xv8 = 0, sA18d

a2 + Eb2 + Gg2 = 1. sA19d

We find, to leading order ine,

N8 = N −
eu

E
Xu −

ev

G
Xv. sA20d

In order to calculate the coefficients of the first and second
fundamental forms of the perturbed surface we have to know
also the derivativesNu8 andNv8. Now we use Christoffel sym-
bols (A11) to express the second derivativesXuu,Xvv ,Xuv in
terms ofXu,Xv ,N. We find

Nu8 = −
e

E
Xu − S eu

E
fG11

1 Xu + G11
2 Xv + eNg +

euu

E
Xu −

euEu

E2 XuD
− S ev

G
fG12

1 Xu + G12
2 Xvg +

evu

G
Xv −

evGu

G2 XvD .

Reorganizing the above expression, we find

Nu8 = XuF−
e

E
−

eu

E
G11

1 −
euu

E
+

euEu

E2 −
ev

G
G12

1 G
+ XvF−

eu

E
G11

2 −
ev

G
G12

2 −
evu

G
+

evGu

G2 G −
e

E
euN.

sA21d

We use the Christoffel symbols in the above expression
for Nu8 and find

Nu8 = XuF−
e

E
+

1

2

Eu

E2eu −
1

2

Ev

EG
ev −

euu

E
G

+ XvF1

2

Ev

EG
eu −

1

2

Gu

G2ev −
euv

G
G −

e

E
euN. sA22d

A similar expression forNv8 is obtained by replacingu↔v
andG↔E in the above expression:

Nv8 = XvF−
g

G
+

1

2

Gv

G2ev −
1

2

Gu

EG
eu −

evv

G
G

+ XuF1

2

Gu

EG
ev −

1

2

Ev

E2eu −
euv

E
G −

g

G
evN. sA23d

Substituting Eqs.(A15), (A16), (A20), (A22), and(A23)
in Eqs.(A3) and (A4) we obtain the coefficients of the first
and second fundamental forms of the perturbed surface[in
the coordinate system(A14)]:

E8 = E − 2ee+ Ose2d,

G8 = G − 2eg + Ose2d,

F8 = Ose2d,

e8 = e− e
e2

E
−

1

2

Eu

E
eu +

1

2

Ev

G
ev + euu + Ose2d,

g8 = g − e
g2

G
−

1

2

Gv

G
ev +

1

2

Gu

E
eu + evv + Ose2d,

f8 =
1

2

Ev

E
eu −

1

2

Gu

G
ev + euv + Ose2d. sA24d

The existence ofOsed corrections to the off-diagonal termf8
of the second fundamental form indicates that the coordinate
system we chose is not(to linear order in the perturbation)
along the principal directions of the perturbed surface. How-
ever, the absence ofOsed terms inF8 indicates that the co-
ordinate system is still orthogonal(to linear order ine).

Substituting the perturbed coefficients(A24) into Eq.
(A7) we arrive at the following linear expansion of the mean
curvature:

H = H! +
1

2
eS g2

G2 +
e2

E2D +
1

4E
SGu

G
−

Eu

E
Deu

+
1

4G
SEv

E
−

Gv

G
Dev +

1

2E
euu +

1

2G
evv. sA25d

Moreover, using Eqs.(A5) and (A6) and the Codazzi equa-
tions, the above equation can be recast in the form

H = H! + es2H!2 − Kd +
1

2
Heu

1

2E
flnsG/Edgu

+ ev
1

2G
flnsE/GdvgJ +

1

2E
euu +

1

2G
evv. sA26d

or

H = H! + e
1

2
sk1

2 + k2
2d +

1

2sk1 − k2d
fDuk2Due − Dvk1Dveg

+
1

2
fD2

ue + D2
veg, sA27d

where in the above equation we introduced the covariant
derivatives

Du ;
1

ÎE
]u, Dv ;

1
ÎG

]v. sA28d

On a CMC we haveDuk1=−Duk2,Dvk1=−Dvk2. This im-
plies the relation

1

sk1 − k2d
fDuk2Due − Dvk1Dveg

=
1

sk1 − k2d
fDuk2Due + Dvk2Dveg

=
=sk2 · =se

sk1 − k2d
,

where =s is a projection of the gradient on the surface
Xsu,vd:
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=s ;
Xu]u

uXuu2
+

Xv]v

uXvu2
. sA29d

Also we have

=sK = =ssk1k2d = sk1 − k2d=sk2,

which leads to

=sk2 =
=sK

k1 − k2
.

Also,

sk1 − k2d2 = 4sH!2 − Kd.

So finally we obtain, in a coordinate-free form,

H = H* + s2H!2 − Kde −
1

8
=slnsH!2 − Kd · =se +

1

2
=s

2e.

sA30d
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