PHYSICAL REVIEW E 70, 031609(2004

Ripening of porous media
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We address the surface-tension-driven dynamics of porous media in nearly saturated pore-space solutions.
We linearize this dynamics in the reaction-limited regime near its fixed points—surfaces of constant mean
curvature(CMC surfaces We prove that the only stable interface for this dynamics is the plane and estimate
the time scale for a CMC surface to become unstable. We also discuss the differences between dynamics in
open and closed environments, pointing out the unlikelihood that CMC surfaces are ever realized in such
environments on any time scale.
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[. INTRODUCTION We are able to show that arbitrary surfaces are unstable to
, , . ) Ostwald ripening under a quite general set of circumstances,
~When solid grains are suspended in a solution saturated tact which may have implications for the ultimate fate of
with the molecular constituents of the grains, they underggyicontinuous porous media in geophysical and other applica-
coarsening under the thermodynamic driving force of surfacgions, We are unaware of any previous demonstration of this
tension. During this phenomenon, known as Ostwald ripens,ndamental property of two-component systems that attains
ing, the free energy of the system is lowered by minimizingine |evel of generality of our discussion.
the contact area between the coexisting phases. Molecules \yhje we are able to estimate time scales for these insta-
dissolve from high-curvature areas of the interface, pasgjjities for geophysical systems, for real earth science sys-
through the solution, and can precipitate in low-curvaturgemg gissolution-precipitation dynamics involve complicated
surface regions. This dynamics can be very complicated anghiticomponent equilibria, and non-surface-tension-related
depends on many parameters such as chemical compositiqechanisms such as pressure solution often dominate as well
induced temperature and pressure fields, and other facto[g]_
[1].
For the case of grains suspended in a solution, a mean Il. EQUATIONS OF SURFACE MOTION

field theory due to Lifshitz-Slyozov and Wagner is successful Following [5] we consider the evolution of an interface
in capturing the dynamics at late stages of the ripening Prof. _ (u.v) bet inal ¢ isotroni
cess for low solid volume fractiof2]. Another example of —X{U,v) between a porous, single component, ISotropic

surface-tension-driven ripening arises in the kinetics of50lid and its ideal solution in the interstitial fluid. The solid is

foams[3], in which the passage of gas across the fluid bOr_subject to a first order dissolution-precipitation reaction in a

ders separating gas bubbles allows larger bubbles to grow How f!eld of velocity v. Th? ngrmal velocity of the surface
the expense of smaller ones—dry foams with a small quuia“”(x) into the pore space s given by
volume fraction represent an opposite limit from the Un(X) = = K (1 — @ 2#00kT) (1)
Lifshitz-Slyozov-Wagner case. ) , ) S .
In this report we study Ostwald ripening in porous media,WhereK; is the dissolution rate, and the p_reC|p|tat_|on rate is
where the fluid in the pore space is approximately saturategiontrolled by the Boltzmann factor associated Wlt_h the dif-
with the ingredients of the solid phase. Unlike the examplederence Au(x) = us{X) - uso(x) between the chemical po-
above, in typical porous media both the solid and pore spaci@ntials of solid and dissolved molecules at the interfeice
components of the medium are connected. An exampl&eferred to the chemical potential,, for a flat surface in
would be a sedimentary material such as sandstone, with tfRguilibrium with an ideal saturated solution of concentration
water in the pore space saturated with the silica componensa these are given by

of the rock. Another example would be crushed ice, with —
water vapor saturating the air in the pore space between ice HouflX) = ptar + 2rmotH (), @
grains. . . — c(x)

It is clear that the fixed points of the dissolution- Msol(X) = tpar + KT IN—=, (3
precipitation dynamics are surfaces of “constant mean curva- Csat

ture” (CMC surfaces However, determining whether such \\here v is the molecular volume in the solid; is the in-

surfaces are metastable or unstable is consiQerany more iRsrfacial energyc(x) is the concentration near the surface
volved than in the case of isolated spheres discussed abovﬁoint x, and H(x)=(1/2)(5S/6V) is the mean curvature

which measures the local variation in surface af8awith
respect to a volume chang® of the solid. Here and else-
*Present address: Division of Engineering and Applied Sciencesyhere we define all concentrations with respect to the con-
Harvard University, Cambridge, MA 02138, USA. centration in the solid.
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For Au<KT, Eqg. (1) reduces to B
A
2 KT c(x,t
0 = = K27 |y - KT S0 °°
kT 2Vm0' Csat
SinceH should be no larger than the inverse of a typical pore Pe ) Flow-
sizeL, and v,,o/KT is usually a molecular scale Reaction- " Limited
1| Limited
kT
>|L1=H, (5) A Diffusion-|
Ymo / Limited
we see that the linearized form of the dynamics holds for a
nearly saturated solutiocr Cgy, 0 1 hae
The surface dynamics described in E4). depends on the PeDa

dynamics of the concentration fielt(x,t) in the solution,
which in turn is determined by an advection-diffusion equa-
tion,

FIG. 1. Kinetic “phase diagram.” Note that for low Pe the prod-
uct PeDa determines whether the system is reaction-limited or
transport limited, while for high Pe it is Da that determines this
Jdc balance. Poinf corresponds to a “perfect closed” system, while the
at V-J=DVc-V -(vo), (6) line B (along which Da=0corresponds to a “perfect open” system.

1 iting cases of this problem, which we term “perfect open”
In(x) = V—un(x)for xel, (7)  and “perfect closed” systems. In a perfect open system, the

" velocity of the flow through the medium is considered suffi-
whereJ is the current, and, its component in the normal ciently rapid that in effect each element of the surface is in
direction to the surfaced is the diffusion constant, andis  contact with fluid whose concentraticrof the solute is fixed
the fluid velocity, whose normal component must vanish  py a distant reservoir. Thus(x,t)=c in Eq. (4) is fixed in
on I Note that our use of Eq(l) implies that the this case. The other limit of a “perfect closed” system, in
dissolution-reprecipitation process cannot be strongly transyhich v =0, will be explored at the end of this report.
port limited; i.e., we are neglecting any dependenciofn Following Ref.[6], the various kinetic regimes are sum-
c. Equation(7) expresses kinematic boundary conditions formarized in the “phase diagram” depicted in Fig. 1, as a func-
Eq. (6) on I'. Far from the evolving interface the solution tion both of Pe as well as of the “Damkohler” number Da
concentration reaches some spatially homogeneous valuek,/y, which controls the degree of transport vs reaction
and the velocity is given by the flow in the medium, which jimijtation in the high-Péclet-number limit. In the low-Péclet-
solves the appropriate fluid dynamical equation for thenumber limit, the degree of transport vs reaction limitation is

boundary conditions on fluid flow in the medium. controlled by the product of Pe and Da, as indicated in
As already hinted, the nature of the problem we have tgrig, 1.

consider depends strongly on whether we are concerned with

reaction-limited or transport-limited kinetics. The reaction ll. PERFECT OPEN SYSTEM: GEOMETRICAL
rate K; determines a typical reaction time,,.=L/K;. The FORMALISM

transport time 7., Which appears implicitly in Eq(4)
through the ternt(x,t), is the typical time for the solution
concentration to relax to a spatially homogeneous value b
the transport process described in E8). In this study we

In the perfect open case, the concentratagr) on the
solution side of the interface has the constant valyeand
Yhe interface dynamics is governed only by Ed), which

will be concerned only with the casg,,.& 7irans We are not yields
interested herein in transport-limited phenomena such as 2vm0 .
dendritic growth at the surface. Un(X) = = K KT [H(x) —H*], (8)

Even with this restriction, we must still specify something
about the nature of the transport in order to clearly define ouwhere H, =[kT/(2v,0)]In(C./Csy). The caseH*=0 corre-
problem. Consider the Péclet number characterizing transsponds to the well-known Allen-Cahn equatifdtj.
port in the medium, Pesl /D, wherev is the characteristic CMC surfaces, for whictH(x)=H* everywhere on the
fluid velocity andL the pore size, which serves as a characsurface, are the fixed points of the dynam(8s These sur-
teristic length scale in the medium. In the limit P&, there  faces have been studied in a variety of contexts, notably for
is no flow in the medium, and the total amount of solid their relationship to certain phases of block copolyni&is
material (whether in matrix form or in solutionmust be  The simplest examples are a sphere of radim&/H and a
conserved. In the opposite limit, in which the velocity cylinder of radiug =1/2H. We are more interested, however,
— oo, We expect the concentration everywhere in the mediunin bicontinuous surfaces, in which the regions on both sides
to be fixed by the concentration upstream, outside the regioaf the surface are connected; these will represent a better
in which the interface is evolving. model for porous media, in which the solid matrix provides

Since the full solution of the transport equations in a po-competence, while the fluid component is entirely connected
rous medium is daunting, we concentrate on these two limallowing large-scale flows to occur.
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(a) (b) Eq. (8). Consider a surface’(u,v)=x+e(x)n(x), whose de-
viation from a CMC surface(u,v) e I'* with H(x)=H* is
given by a(small normal displacemeré(x). In the Appen-
dix we show that the corresponding variatiéH(x) =H(x")
—H* is given to first order ire by

H(X) = — | (2H)?-K)e+ VB - Vee+ %vge ()

FIG. 2. (Color onling (a) The SchwartzP surface, a minimal 1
(zero mean curvatuyesurface of simple cubic symmetry. A single B(x) = - =In[(H*)? - K(x)], (10
unit cell is shown(b) A single unit cell of sizeL of a CMC surface 8
with HL= 2.0, which is close to a simple cubic lattice of touching
spheres. Figures courtesy of J. T. Hoffman, MSRI Scientific Graph
ics Project, UC-Berkeley8].

where V4 and V§ are the surface gradient and Laplacian,
respectively, and(x) is the Gaussian curvatureatSubsti-
tuting Eq.(9) in Eq. (8), we obtain the linear dynamics near

A special case of CMC surfaces are “minimal surfaces,”a CMC surface with mean curvatuk€':
for which H(x)=0. These surfaces have been extensively
studied in the context of analytic function theory, and many Jde _ 2Kvmor (11)
such surfaces have been discovered, including bicontinuous at kT '
surfaces, such as the famous triply periodic “Schwdttz
surface”(see Fig. 2[9]. ForH*=0, Eq.(8) is the equation of 1
motion for a manifold seeking to minimize its own surface L=2H)?-K+VB V,+=-VZ2 (12)
area, a dynamics that is sometimes called “motion under 2
mean curvature10]. . - .

Andersonet al. have extended several such surfaces intd¥€c@lling the definition oH and K in terms of the local
bicontinuous triply periodic CMC surfaces with+0 [11].  Principal radii of curvature of the surfad® andR,,
The extension of the Schwarsurface to a family of CMC _ _ _
surfaces is shown in Fig. 3, with an example degicted in Fig. H= (R11+ Rzl)lz’ K=(RiR) ™.
2(b). Thesg surfacesf vary continuously from. tResurface Since 2—|2—K:(R12+R§2)/2>0,
(M) to a simple cubic lattice of barely touching spheres a
one end point(A), and to a simple cubic lattice of barely
touching spherical holes at the other end pékit) (see Fig.
3). Andersonet al. also generated families corresponding to
fce, bee, and diamond lattices of spheres, with qualitativel
similar properties. Although we are aware of no reporte
examples of “amorphous” nonperiodic families of CMC sur-
faces, it is possible that such families exist. Such familie
would be most relevant to real porous media.

uniform  precipitation
t(e> 0) decreases the mean curvature, making the surface lo-
cally more hospitable to deposition, while dissoluti@r< 0)
increases the mean curvature, favoring further dissolution.
This observation already suggests that the surface is likely to
Yoe unstable.

Because the term i@ which couples Gaussian curvature
radients with the gradient af is non-Hermitian, it is more
onvenient to work with the Hermitian operatpf defined

via the “gauge transformation”

IV. STABILITY OF CMC SURFACES

We now show that all periodic CMC surfaces with the
(degenerateexception of planes are unstable fixed points ofso that

(a) (b)

0.8 - . , . . , . FIG. 3. (a) The dimensionless mean curvature
HL versusgs, the solid volume fraction enclosed
by the surfacgEq. (23)], for the constant mean
curvature extension of the Schwarkz surface
with unit cell sizeL. The minimal(H=0) P sur-
face is represented by the poikt, and the end
points correspond tEA) a simple cubic lattice of
touching spheres, an@d\’) a simple cubic lattice
of touching spherical holegb) The surface area
L2 per unit cell of sizeL versus enclosed solid
volume fraction ¢s for the same simple cubic
CMC family. The lower branch is stable under
periodic, volume-preserving, surface-minimizing
0.2 dynamics. Figure adapted from R¢1.0], cour-

z o ! 2 02 04 06 08 tesy of Advances in Chemical Physics
HL O

H = eBXLgBX (13)
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1 o kTP
H=V) + 2V, (14) Tiipen= o'

Komr (19

Note that, intuitively, the instability is enhanced by an in-

crease in the magnitude either of the mean curvature, or of

the Gaussian curvatui@ince the latter is on average nega-

) , tive for a surface of large genus, such as a typical porous
If the Hilbert spaces upon which the two operatdrand surfacg. In the sintering dynamics of “kissing” spheres, this

H act are identical, the eigenvalues f are identical 10 gependence on the Gaussian curvature plays an important

those of £ [12]. Th|s_should certainly hold n_c we restrict 5o [13].

ourselves to periodic s_urfaces. These eigenvalues are g, triply periodic CMC surfaces, the periodicity of the

bounded from above provided thiat(x)| <. “potential” V(x) implies that the eigenmodek ,(x) of the

For any functionW(x) defined on the surface, a lower operatori (and of £) are surface Bloch functions,
bound on the maximum eigenvalua, of { (and conse-

quently on the maximum eigenvalue 6§ can be established HWy n(X) = oy o€ Uy n(X), (20)
using the inequality

VOO = (H)?- K- (VB (VP (15)

Uk,n(x) = Uk,n(X + R), (21)

f dS¥(HW) whereR is a lattice vectork is the crystal momenturfton-

r (16) fined to the first Brillouin zong andn is a discrete label
) ' distinguishing between different branches. Standard tech-

f dSv| niques should allow determination of the spectrum?7of

r throughout the first Brillouin zone.

where [ dSis the ordinary surface integral. Using the trial ~ Since the eigenfunction of the largest eigenvalue has the

function Wg(x) =€, we obtain same sign(precipitation or dl_ssolutlohe_verywhere on the

surface, the unstable dynamics of KE§) involves transport

(1)02

of solute into(or out ofy the pore space from the distant
f d9(H")2 - K] 2(H*)? - K] reservoir with fixed chemical potential.
r
Wy = V. CLOSED SYSTEM DYNAMICS
f d{(H)? = K] nas . -
- n a “perfect closed” system, the surface motion is reac-

tion limited, such that the solute concentrations near the en-

f A (H*)2 - K]¥ tire surface are equal to the average concentration in the pore
. c. This condition is satisfied at the pore scdleif D
= Hf + . (17) >KiL/csy In addition, we impose conservation of total
f dSZ(H*)Z _ K]—1/4 solid. _ _ o
r By integrating Eq(4) over the surface, we see tlamust

then approach a valug,, determined by
Note thatH?-K=[(1/R;)-(1/R,)1?/4 is non-negative ev-

erywhere on the surface, and reaches zero only at umbilic CedH) _ 2vpoH
_ . . In = , (22)
points of the surface for whicR;=R,. For minimal surfaces, Csat kT

these umbilics will be isolated points on the surface, while _

for more general CMC surfaces, we might expect them to bgontrolled by the mean curvatute of the surface, over a
organized locally into arcs on the surface. Suppose that at @haracteristic time scalgqe=LCsaf Ky FOr 7> 744 the sol-
distance s from the umbilic point we havéR,—R,|<A&  ute concentration is “slaved” toce((H). Conservation of the
(with A a constantin the former case anfR;—R,|<AdS in total solid requires

the latter case. It follows that the surface integral in the de-

nominator on the right-hand side of Ed.7) will not diverge, d=ds+c(l-dy, (23

so that whereds is the solid volume fraction enclosed by the surface
and ¢, would be the solid volume fraction if none of the
wo > (H)? (18 o

solid were dissolved. Eliminating=c.4H) from Eq. (23)
strictly. using Eq.(22) shows thatps is very insensitive to the value

Thus it follows that all CMC surfaces, porous or nonpo- of H,
rous, are unstable to Ostwald ripening. This conclusion ap- _
plies to periodic surfaces, but the structure of the argument _ 2C{1-¢y vmolH]
strongly suggests that it will apply to nonperiodiamor- - bl —ce? KT <
phoug CMC surfaces as well, should such surfaces exist.

For a system with a pore scale lof we expect this insta- where we have used E@5). Thus, in a “perfect closed”
bility to manifest itself on a time scale of system, we takebs constant, which is an excellent approxi-

dlogés
diogH

1, (29
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® ; is needed to activate these modes. For amorphous surfaces,
/‘ the band structure picture is not appropriate, but we still
P / 1 L expect unstable modes to appear above a characteristic
. A Tipen . | length scaleg/g=L. In either case, it is natural to ask if there
| \ is a window of time over which the CMC surfaces might be
] K observable, before the instability manifests itself.
Trdax . ; During the timer, 4, Characterizing the relaxation to the
' “~_ Y CMC surface, the diffusion length over which solid transport
/ is possible islp=VD7eae Using the reaction-limited con-
B straintD > KL/ Cgat @aNd Trgjax™ Tripen WIth 7ipen given by Eq.
' ' (19), we find
FIG. 4. The spectrum of eigenvaluesof the operator con- 0 \/W
trols the instability of the CMC surfaces under both open and closed — > >1, (25)
system dynamics. There must be an unstable mode=@f indi- L O VmCsat

cated by point, but this mode is suppressed under closed systenyhere the last inequality follows from E@5), andcey=<1.
dynamics by conservation of solid volume, since the next mode agince we thus expedt, > £,, by the time a surface relaxes
k=0, indicated by poinB, is stable. The dashed lines indicate the on the pore scale to a CI\/?C surface, the diffusive transport
Brillouin zone boundaries. between pores will have activated the unstable dynamics,

mation for 7> 7., This dynamics is now given by E¢g) taking the system away from this surface. Thus we do not
with the constant* replaced byl? whose evolution with expect an intermediate-time window over which CMC sur-

time is controlled by the constraint of constat~ (¢, faces would be seefl4].
—Csa)/ (1—Csyy. This is surface area minimization under the
constraint that the volume contained within the surface is

conserved. _ o Our primary result is a kind of “no-go” theorem: CMC
~Consider again periodic surfaces of the Anderson typesyrfaces will in practice be rather irrelevant to the surface-
Figure 3b) shows the total surface area as a functionjof  tensjon-driven ripening of porous media, at least in the
along the manifold of CMC surfaces of simple cubic struc-sjngle-component case studied here. Thus we expect that
ture. Althoggh all cmC _solutions represent fixed points of |ong-time behavior of such media to be dominated by ripen-
the dynamics, we anticipate that for a give, only the  ing through a variety of structures that do not necessarily
CMC surface with the lowest area can be stable under theggave any resemblance at all to CMC surfaces. It remains

dynamics, and then only if the system is also required tg)nly to specify the time scale over which the ripening phe-
maintain its spatial periodicity. We have confirmed this by nomena will become dominant.
direct simulation usinGURFACE EVOLV!;R[1_3,1Q—the sur- Using representative values fét; and o for quartz in
faces along the Iovv_er_ energy branch in Figo)Zare selecteq water[15], we get forl. ~100 um that jpen~ 500X 108 yr,
by surface area minimization at constant volume prowd_eqi time scale over which a geological system should be re-
one works with one unit cell of the Anderson surfaces withgarded as open. However, a similar estimate for CACO
periodic boundary conditions. This result is an extension Oeields a value ofrpe,~7 yr, which is quite short on geo-
the well-known stability of the minimal surfaggointM in  |ogjcal time scales. On this time scale, the concentration of
Fig. 3) to the entire lower branch in Fig(l3, under periodic  sojute in the water is determined by conservation of the total
surface area minimization dynamics with conserved volumeamount of the solid components, characteristic of a closed
A corollary of this result is that along this lower branch system[17].
or equivalentlyH has only one unstable=0 mode, which is Finally, for the example of a crushed ice pack with air as
disallowed by solid conservation under closed system dythe interstitial fluid, we have over the range 10 to 0°C that
namics. Thus the eigenmode spectruntfoutlined in Eq. K increases from & 1075 to 1.3x 10° m/s. For a packing
(20), has the band structure shown in Fig. 4; at srkdliere  of grains with a 1.5 mm diameter and a surface energy for

can only be one unstable branch of the spectrum. For a unjhe ice of >=109 mN/m, this yields estimates for ripening
cell system with periodic boundary conditions, only tke times in the range 26 to 57 days.

=0 modes can participate in the dynamics, and the instability
is suppressed by the volume conservation. Thus the stable
mode with the longest relaxation time,,, Will control ap-
proach to the stable CMC surface; dimensional analysis sug- We would like to thank I. Androulakis, P. Chaikin, S.
gests thatreja™ Tripen (Cf. Fig. 4. Milner, and T. Witten for helpful and informative discus-

Nevertheless, for an extended system this apparent stabéions. A. Herhold and R. Polizzotti advised us on the prop-
ity is compromised by the unstable hydrodynantic~#0)  erties of real sedimentary materials. K. Brakke assisted us
modes in the eigenvalue spectrum ERQO), which do con-  with questions regarding the use of therface evolvesoft-
serve the overalp,. It is possible for these unstable modes toware. We are grateful to F. Leyvraz for pointing out an error
be restricted to the topmo&t=0) band and to wave vectors in our reasoning, and to M. Hastings for bringing to our
k< /€y, such that transport of solute over length scalg  attention the “gauge” transformation used in R@f].

VI. CONCLUSION AND GEOPHYSICAL EXAMPLES
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APPENDIX Jry, 1
L . . - ——=5(nB)y(k2= 1),
A. Basic differential geometry, notations and definitions Juv 2
Consider a surfac¥(u,v). The unit normal to the surface
at any pointP is denoted byN(u,v). A complete local de- dry 1 _
scription of the surface is given by the distance between au 2(In Clulrr = 1) (AL0)
neighboring pointsds as functions ofdu and dv and the

projection, of the curvature vector of a curve in a direction The second derivatives of the tangent vectdg, Xy, , Xy,
du/dv onto the normaN, can be expressed in terms of the local coordinate system

Xus Xy, N by using the Christoffel symbols
ds’=Edi+ 2Fdu v + G dv?, (A Y Hsg Y

qu = I‘%1Xu + I‘Iilxv +eN,
_edif + 2fdudy + gdv?
“n~ Ed? + 2Fdudy + Gdv?”

(A2 Xuy =T1Xy + T1X, + N,

Equation(Al) is the first fundamental form, while EgA2)

gives the ratio of the second to the first fundamental form. Xyp =T3X+T5X, + gN. (A11)
The coefficient€,F, G, e, f, g depend on the coordinates

and change from one coordinate system to another. They c

be defined in terms of the tangent vectotg, X, and the

a{H the special coordinate system that we chose the Christoffel
symbols are

normalN by 1E 1E
Fl :__U FZ :___U
E=X, Xy, F=X,-X,, G=X, X, (A3) 1 5 E’ 1 2G’
e=-X, N, f:—l(Xu-Nv+Xv-Nu), =18 2 _1G
2 275" 27575
==X, N,. A4
g v Ny (A4) . 16, ., 16,
A special coordinate system is defined by the principal I==5% T~ G (A12)

directions of the curvature. That is, at each point the tangent
vector X, points to the direction of maximal curvature and We need also the surface derivatives of the norial
the other tangent vectot, points to the direction of minimal

curvature. One can show that this is the only coordinate sys- _fF-eG,  eF-fE

tem for which both off-diagonal termg,f vanish at each “ EG-F2Y EG-FZY”

point on the surface. Moreover, using this coordinate system

one can show that N gF - fG . fF _gEx AL3)
xa =, (AS) "TEG-F2 U EG-F2
Ko = g/G (AG)

. . . B. Linear expansion
At any given point on the surface one can define the mean P

curvatureH(u,v) as the average of the two principal curva-  Here we will calculate the perturbed mean curvature from

tures, k;(u,v) and k,(u,v). The Gaussian curvatuté(u,v)  Egs.(A3) and(A4). Let us represent the perturbed surface by
is the product ofic;(u,v) and k,(u,v). In terms ofE,F, G, e,  the same coordinate system that was chosen for the unper-

f, o turbed surface. That is,
_Eg-2fF+Ge (A7) X' (u,v) = X(u,v) + €(u,v)N(u,v), (A14)
=,
2(EG-F9 where the coordinate systefn,v) is chosen such that the
_2 tangentsX,, X, are the principal directions of curvature at
- &9 . (A8) any point of the unperturbed surfagu,v).
EG-F From Eq.(A14) we get
The coefficientsE,F, G, e, f, g cannot be arbitrary smooth X! =X,+eNy,+ &N, (A15)

differentiable functions ofu and v, but must satisfy the
Gauss and Gauss-Codazzi equations

— — X!=X,+eN, + ¢N. (A16)
(o1 {a ( 1 a\,G)Jr p ( 1 ayE)} a9
sl IR Uy R BN [ We will need also the normal to the perturbed surfiléeTo
/ JU\VE du Jd IG d .
VEG VE vANG Jv obtain it we use the fact thaf,,X,,N form an orthogonal
and system and write
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N’ =aN + BX,+ yX,, A17 e 1E 1E
aN + BX, + yX, ( ) e’:e—e————u6u+——vfu+€uu+0(62),
where «, B,y are determined by requiriny’ to be a unit E 2E 26
vector orthogonal to the two tangents vectors of the per- )
. 1G 1G
turbed surface: g =g- 696 _ EEvf” + 5Eu6“+ €, +0(é),
N'X/=N'X; =0, (A18)
1E 1G
?+ER+Gy2=1. (A19) fr = EEUGU-EEUGU+GUU+O(62). (A24)

We find, to leading order itg,
The existence 0D(e) corrections to the off-diagonal terim
N =N = Uy — Soy (A20) of the second fundamental form indicates that the coordinate
E’Y G system we chose is ngto linear order in the perturbatipn
In order to calculate the coefficients of the first and secon long the principal directions of the perturbed surface. How-

ver, the absence @(e¢) terms inF’ indicates that the co-
fundamental forms of the perturbed surface we have to knov(%rdinate system is still orthogonéb linear order ine)
also the derivativedl/ andN;. Now we use Christoffel sym- y 9 '

o . Substituting the perturbed coefficient®24) into Eq.
bols (A1) o express th_e second derivativég,, Xy, Xy, in (A7) we arrive at the following linear expansion of the mean
terms of X, X,,N. We find

curvature:
, e € € E 2
M=~ e (B i, e+ - wer e 220 E) LG ),
2 \G° E 4E\NG E
€ 1 2 €uu GUGU
-\ =T +IX, ]+ —X ——X). 1(E, G, 1 1
(G 12Xu 127 G " G? v +E E_E €v+2_E€uu+£€Uv' (A25)
Reorganizing the above expression, we find Moreover, using EqQS/A5) and (A6) and the Codazzi equa-
, e e, €u 6B € 4 tions, the above equation can be recast in the form
Ny=Xyl—=-ZTn-——+—= — =T
E E E E G 1 1
H=H*+e2H*2-K) + ={ ¢,==[In(G/E)],
€2 _ G2 _&u, &Cu|_¢€ 2| “2E
Xl -2l Sl t =2 |~ zaN-
E G G G E 1 1 1
(A21) + evz[m(E/G)v] + Eemﬁ 2G5 (A26)

We use the Christoffel symbols in the above expression,,
for N/, and find

1
) e 1E 1E, € H=H*+ e=(k® + k?) + ————[Dyk,D e — D, k1D, €]
] 20 A T
1
1E 1G e +=[D?,e+ D% €], A27
Xy __Ueu___gev_@ -—¢N. (A22) 2[ ue UE] ( )
2EG " 2G G| E

where in the above equation we introduced the covariant

A similar expression foN is obtained by replacing«<v  gerivatives
andG«+ E in the above expression:
1 1
. g 1G 1G € D,=-—=d» D,=-=4,. (A28)
Nv‘xv[‘a+za’éfv‘z?é;€u‘€ S OET
On a CMC we haveDk;=-D«5,D,x1=-D k5. This im-
1G, 1E, €w g . . v v
+Xy| scre s 56 = |- ~6N. (A23) plies the relation
2EG 2E E G
1
Substituting Eqs(A15), (A16), (A20), (A22), and(A23) ————[Dyk,Dye - D,kiD, €]
in Egs.(A3) and(A4) we obtain the coefficients of the first (ky = Kcp)
and second fundamental forms of the perturbed surface 1
the coordinate systefA14)]: = - KZ)[DUKZDUE+ D, k2D, €]
E'=E-2ee+O(é), Vo Ve
G' =G-2eg+0(e), (k1= K2)
where Vg is a projection of the gradient on the surface
F' =0(é), X(u,v):
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Xydy X0 VK
s= ot o (A29) Vo= ——.
|XU| |XU| K1~ K2
Also,
Also we have (ky = Kp)%= 4(H*2 = K).

So finally we obtain, in a coordinate-free form,

VK =V(kiky) = (k1 — ko) Vi, . 9 1 2 1 2
H=H +(2H*-K)e- évsln(H* -K)-Vee+ EVS €.

which leads to (A30)
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